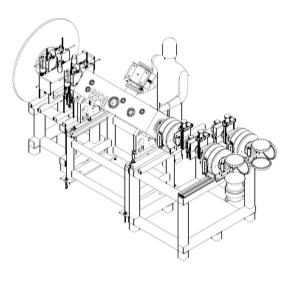

Pre-injector Upgrade Updates (30 Mar 2011 – 13 Apr 2011)

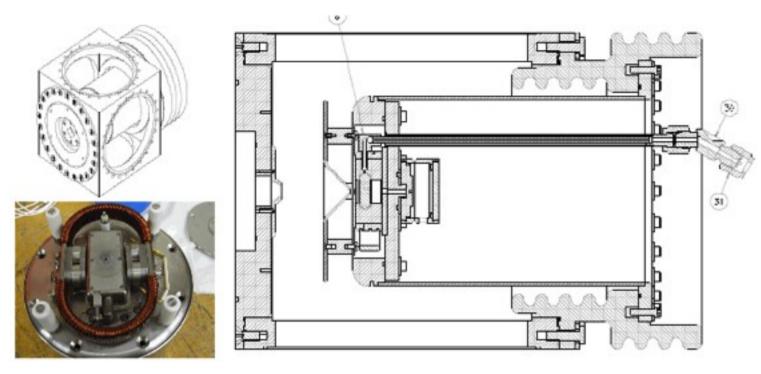
C.Y. Tan 13 Apr 2011


Reminders

- Fill in the MS Project time lines.
- Fill in paper sections for the review.

 PEV
 DESCRIPTION
 DRAIN
 DATE

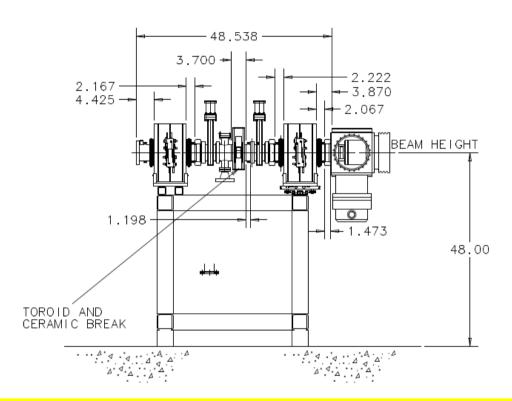
 4PPROVED
 DATE



PREACCELERATOR PRELIMINARY LAYOUT

MARCH 30, 2011

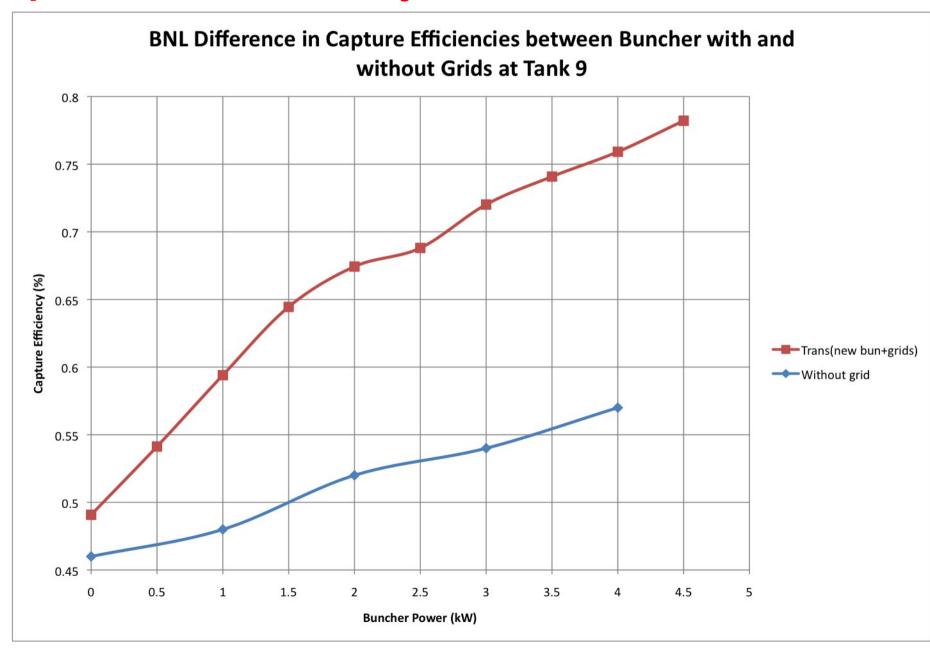
ULESS	OTHER!	HSE SPE	CI FIED	OFFIGURATOR			
	Т			DEWAN			
±	±		±	CHECKED			
1. 672 4	K ALL 3	HIT EIG	5	APPROVED.			
S. DINE	HSTORS B		01	USED ON			
	HE WIT	OH. SUPP / Vs. 11.5.1		MATERIAL			
			P-21				
€		BRMI	NA'	TIONAL A			ORY
•		BRMI	NA'				ORY
•		ERMI U	NA'	STATES			PE
•	Þ F	ERMI U	NA'	STATES		ENERGY	


Source Status

Device	Status	Comments
Source	Drawings completed.	Machine shop has drawings. Manufacturing has started.

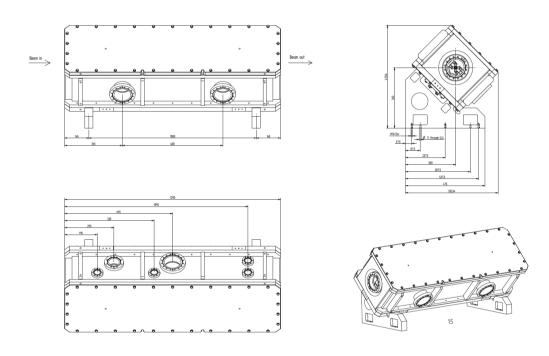
Water I- water tapped off (07 Mar 2010) See next talk

LEBT Status



Device	Status	Comments
Einzel lens Solenoid PS	Drawings complete. Steve Hays has 2	All parts except bellows are here. Need to put in inductive feedback loop.
Solenoids LEBT drawings Correctors Vacuum pumps	Still being built Being drawn final design (07 Mar 2011)	See next slide. Complete? Milhouse still working on drawings. Order pending

Solenoid status


- #1 fiducials added. Stretch wire measurements and Hall probe measurements this week.
- #2 is potted.
- #3 will be potted this week.
- #4 waiting for parts.

Capture Efficiency Data for Buncher

RFQ Status

No news

Device	Status	Comments
4816 PA	spigots added to I- line. power outlets done	done as of 1 st week of march

http://www.firma-kress.de/downloads/Accelarator%20Technology%20update.pdf

Radio Frequency Quadrupole RFQ accelerator for MedAustron, Vienna

- > First RFQ for medical application with new design.
- > Cavity with rectangular cross section for easy assembly, access and allignment
- > RFQ-accelerator and Buncher separated for independent operation

Technical Data:

Cavity made of stainless steel 304L, inner surface copper plated. Accelerating structure made of OF-Cu.

Length	1330 mm
Cross section	420 x 380 mm
Resonance frequency	216,8 MHz
Electrode voltage	70 kV
Input energy	8 keV/u
Output energy	400 keV/u

For more information visit the *Med*Austron Homepage: www.medaustron.at

Kreß GmbH Zehn Morgen 12 63599 Biebergemünd / Germany Contact Dr. Jürgen Häuser Phone +49 6050 90987-17 Fax +49 6050 90987-25

Email J.Haeuser@firma-kress.de Homepage www.firma-kress.de

Accelerator Technology

Radio Frequency Quadrupole (RFQ) accelerator for the NSCL at Michigan State University MSU, USA.

The RFQ accelerator shown below is the first "4-Rod Type-RFQ" with a housing made of aluminum with a rectangular cross section. The tank is manufactured from one aluminum block and the inner accelerating structure is made of OF-copper. All stainless steel CF-flanges are welded to the aluminum tank. Due to the new design concept a subsequent adjustment of the electrodes is not necessary. Time consuming and costly copper plating of the cavity is not required.

Together with the Institute of Applied Physics (IAP) and the Michigan State University, special planning and manufacturing processes have been developed in order to reduce the manufacturing time to 9 months. Up to now it took 24 months from the design to the final delivery of a CW operating RFQ accelerator.

Setup at NSCL

Cooling pipes with Swagelok fittings

Accelerating structure with rf-coupler

Technical Data:

Dimensions	3500mm / 500 mm / 500 mm	Resonance frequency	80,5 MHz
Cavity material	Aluminum	Electrode voltage	86,2 kV
Accelerating structure	OF-Cu	Input energy	12 keV/u
Flanges	Conflat (CF Al/SS)	Output energy	600 keV/u
CF-flange sealing	Copper gasket	Shuntimpedance	220 kΩm
Cover plate sealing	2 x Viton O-ring	RF-power	120 kW (CW)

Spiral loaded buncher cavity (BNL_C3-Buncher) for Brookhaven National Laboratory (BNL), USA

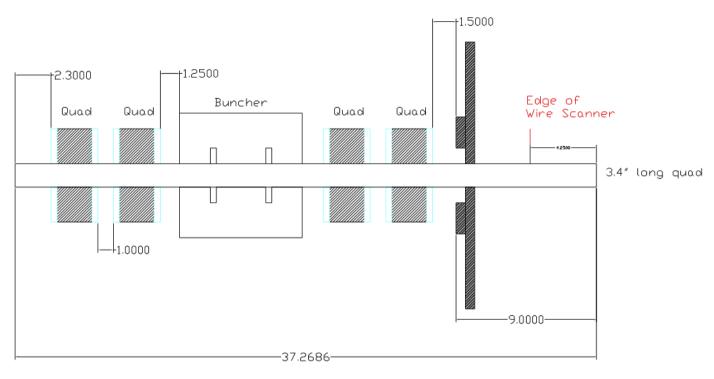
The spiral loaded cavity shown below operates as a buncher behind a 4-rod RFQ at BNL. The particle beam coming from the RFQ has to be longitudinally compressed before it can be injected into the next accelerator. This longitudinal focusing is required so that all ions of a particle pulse will be accepted from the following accelerator.

The cavity is manufactured from a massive block of aluminum and all flanges are conflat flanges (CF-type). The accelerating structure is made of OF-copper. A time consuming and costly copper plating of the cavity is not required.

Technical Data:

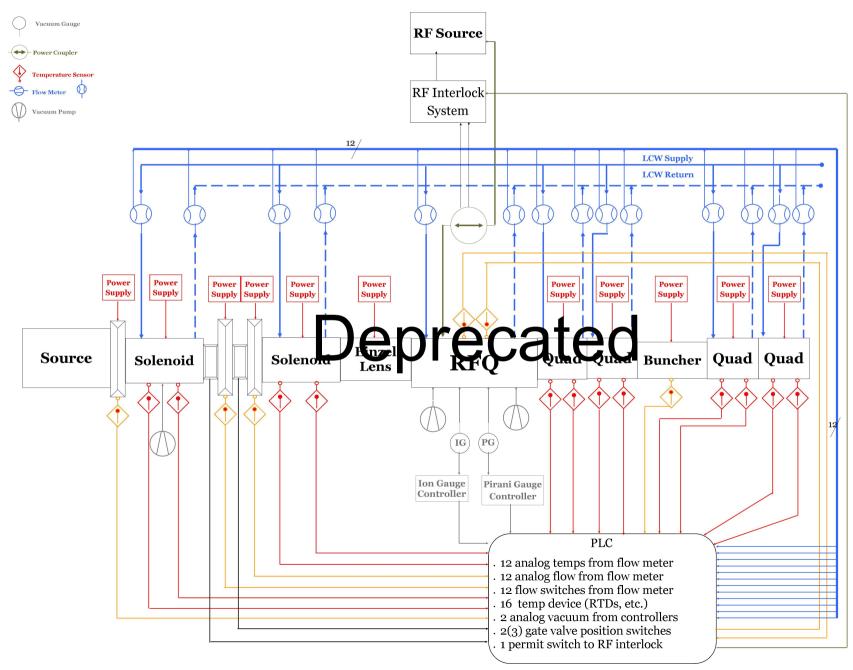
Length	200 mm
Inner / outer diameter	500 mm / 600 mm
Resonance frequency	100,6 MHz
Flanges	Conflat (CF-type)
End plate sealing	Viton+Helicoflex

Radio Frequency Quadrupole (RFQ) proton accelerator for FERMILAB FNAL, USA.


Technical Data:

Cavity made of stainless steel 304L, inner surface copper plated. Accelerating structure made of OF-Cu.

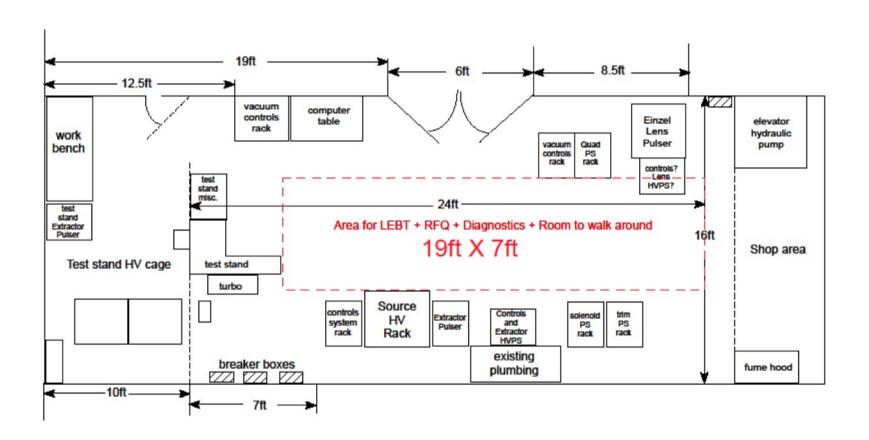
Length	1200 mm
Cross section	300 x 260 mm
Resonance frequency	201,25 MHz
Electrode voltage	76,2 kV
Input energy	35 keV/u
Output energy	750 keV/u



MEBT Status

Device	Status	Comments
Quads	3D drawings complete.	To be distributed. Expected receive parts starting in July. Windings can proceed in parallel.
Buncher	Waiting for bead pull station	Bead pull station being set up. No grids in buncher, resonance at about 203MHz, Q~2000 (c.f. 3500)
Power for quads	Specs to follow	Quads being redone.
Power for buncher		Use present buncher supply in the line.

Controls



Controls

- Controls meeting (06 Apr 2011)
 - See Elmie's summary
 - Need 9 racks
 - 1 rack for solenoids
 - 1 rack for trims
 - 1 rack for controls
 - 1 rack for quads
 - 3 racks for pulser extractor
 - 1 rack for vacuum
 - 1 rack for safety

Test Area

Dan is putting in required racks

Safety

When can the beam line layout in test area be done?

RFQ reminders

- Schempp is vendor
 - Make sure that the vanes are cleaned! See ISIS email.
 - Some cleaning details supplied by ISIS.
 - Review and verify on site mechanical design and construction (already in contract).